# Standard-model prediction for direct CP violation in kaon decays

Christopher Kelly (RBC & UKQCD Collaboration)

 $\begin{array}{c} \text{Talk, LGT 2016, BNL, USA} \\ \text{March } 10^{\text{th}} \ 2015 \end{array}$ 



RIKEN BNL Research Center



# The RBC & UKQCD collaborations

| <u>BNL and RBRC</u>        | Luchang Jin                      | <u>Plymouth University</u>        |
|----------------------------|----------------------------------|-----------------------------------|
|                            | Bob Mawhinney                    |                                   |
| Tomomi Ishikawa            | Greg McGlynn                     | Nicolas Garron                    |
| Taku Izubuchi              | David Murphy                     |                                   |
| Chulwoo Jung               | Daigian Zhang                    |                                   |
| Christoph Lehner           | 1 0                              | <b>University of Southampton</b>  |
| Meifeng Lin                | <b>University of Connecticut</b> |                                   |
| Taichi Kawanai             |                                  | Jonathan Flynn                    |
| Christopher Kelly          | Tom Blum                         | Tadeusz Janowski                  |
| Shigemi Ohta (KÉK)         |                                  | Andreas Juettner                  |
| Amarjit Soni               | Edinburgh University             | Andrew Lawson                     |
| Sergey Syritsyn            | <del></del>                      | Edwin Lizarazo                    |
|                            | Peter Boyle                      | Antonin Portelli                  |
| <u>CERN</u>                | Luigi Deĺ Debbio                 | Chris Sachrajda                   |
|                            | Julien Frison                    | Francesco Sanfilippo              |
| Marina Marinkovic          | Richard Kenway                   | Matthew Spraggs                   |
|                            | Ava Khamseh                      | Tobias Tsang                      |
| <u>Columbia University</u> | Brian Pendleton                  | J                                 |
| _                          | Oliver Witzel                    |                                   |
| Ziyuan Bai                 | Azusa Yamaguchi                  | <u> York University (Toronto)</u> |
| Norman Christ              |                                  |                                   |
| Xu Feng                    |                                  | Renwick Hudspith                  |

# Introduction and Motivation

#### Motivation for studying K→ππ Decays

- Likely explanation for matter/antimatter asymmetry in Universe, baryogenesis, requires violation of CP in decays (direct CPV).
- Direct CPV first observed in late 90s at CERN and Fermilab in  $K_0 \rightarrow \pi\pi$ :

$$\eta_{00} = \frac{A(K_{\rm L} \to \pi^0 \pi^0)}{A(K_{\rm S} \to \pi^0 \pi^0)}, \qquad \eta_{+-} = \frac{A(K_{\rm L} \to \pi^+ \pi^-)}{A(K_{\rm S} \to \pi^+ \pi^-)}.$$
 
$${\rm Re}(\epsilon'/\epsilon) \approx \frac{1}{6} \left(1 - \left|\frac{\eta_{00}}{\eta_{\pm}}\right|^2\right) = 16.6(2.3) \times 10^{-4} \quad ({\rm experiment})$$
 measure of direct CPV measure of indirect CPV

• In terms of isospin states:  $\Delta I=3/2$  decay to I=2 final state, amplitude  $A_2$   $\Delta I=1/2$  decay to I=0 final state, amplitude  $A_0$ 

$$A(K^0 \to \pi^+ \pi^-) = \sqrt{\frac{2}{3}} A_0 e^{i\delta_0} + \sqrt{\frac{1}{3}} A_2 e^{i\delta_2} ,$$

$$A(K^0 \to \pi^0 \pi^0) = \sqrt{\frac{2}{3}} A_0 e^{i\delta_0} - 2\sqrt{\frac{1}{3}} A_2 e^{i\delta_2} .$$

$$\bullet = \frac{i\omega e^{i(\delta_2 - \delta_0)}}{\sqrt{2}} \left( \frac{\mathrm{Im} A_2}{\mathrm{Re} A_2} - \frac{\mathrm{Im} A_0}{\mathrm{Re} A_0} \right)$$

$$(\delta_{\mathrm{I}} \text{ are strong scattering phase shifts.})$$

- Amount of direct CPV in Standard Model appears too low to describe measured M/AM asymmetry: tantalizing hint of new physics.
- Small size of ε' makes it particularly sensitive to new direct-CPV introduced by most BSM models.

• ε' also provides a new horizontal band constraint on CKM matrix:



#### The role of the lattice

- In experiment kaons approx 450x (!) more likely to decay into I=0 pi-pi states than I=2.  $\frac{{\rm Re}A_0}{{\rm Re}A_2}\simeq 22.5 \quad \text{(the $\Delta$I=1/2 rule)}$
- Perturbative running to charm scale accounts for about a factor of 2. Is the remaining 10x non-perturbative or New Physics?
- The answer is **low-energy** *QCD!* RBC/UKQCD [arXiv:1212.1474, arXiv:1502.00263] Strong cancellation between the two dominant contractions



heavily suppressing Re(A<sub>2</sub>).

 Lattice QCD only ab initio, systematically improvable technique for studying QCD at hadronic scale.

# Standard Model Physics and Lattice Determination

# **Weak Effective Theory**

• At energy scales  $\mu$ « $M_{W_s}$   $K \rightarrow \pi\pi$  decays accurately described by weak effective theory.

$$H_W^{\Delta S=1} = \frac{G_F}{\sqrt{2}} V_{ud}^* V_{us} \sum_{j=1}^{10} [z_j(\mu) + \tau y_j(\mu)] Q_j$$
 
$$\tau = -\frac{V_{ts}^* V_{td}}{V_{us}^* V_{ud}} = 0.0014606 + 0.00060408i$$
 perturbative Wilson coeffs. Imaginary part solely responsible for CPV (everything else is pure-real)

• Q<sub>i</sub> are 10 effective four-quark operators:



#### Lattice Determination of $K \rightarrow \pi\pi$

- On the lattice compute  $M_j = \langle (\pi \pi)_I | Q_j | K \rangle$
- Operators must be renormalized into same scheme as Wilson coeffs: Use RI-(S)MOM NPR and perturbatively match to MSbar at high scale.
- Mixing under renormalization, hence Z is a matrix.

$$A_{2/0} = F \frac{G_F}{\sqrt{2}} V_{ud} V_{us} \sum_{i=1}^{10} \sum_{j=1}^{7} \left[ \left( z_i(\mu) + \tau y_i(\mu) \right) Z_{ij}^{\text{lat} \to \overline{\text{MS}}} M_j^{\frac{3}{2}/\frac{1}{2}, \text{lat}} \right],$$

• F is finite-volume correction calculated using LL method.

- A<sub>2</sub> computable using standard lattice techniques. Most recent determination ~12% total error (3% stat) dominated by PT truncation in NPR.
- A<sub>0</sub> considerably more difficult for 2 reasons:

#### **Disconnected Diagrams**

• "Type-4" disconnected diagrams (coupling between subdiagrams only via sea gluons) are *very* noisy.

- Use computationally expensive (and non-trivial to implement) Trinitystyle all-to-all (A2A) propagators:
  - 900 exact low-eigenmodes computed using Lanczos algorithm
  - Stochastic high-modes with full dilution of indices
- Allows us to tune  $\pi\pi$  source shape to minimize vacuum overlap.
- Also to perform all spatial and temporal translations to boost statistics.

#### **Physical Kinematics**

- Important to calculate with physical (energy-conserving) kinematics.
- With physical masses:  $2 \times m_{\pi} \sim 270 \text{ MeV} \ll m_{K} \sim 500 \text{ MeV}$
- Requires moving pions!
- This is excited state of the  $\pi\pi$ -system. Possibilities:
  - try to perform multi-state fits to very noisy data (esp. A<sub>0</sub> where there are disconn. diagrams)
  - modify boundary conditions to remove the ground-state
- Second approach optimal. Straightforward for  $A_2$  (APBC on d-quark) but additional requirements for  $A_0$  not satisfied by APBC: must conserve isospin and apply momentum to both charged and neutral pions.
- Solution: Use G-parity BCs:

$$\hat{G} = \hat{C}e^{i\pi\hat{I}_y}$$
 :  $\hat{G}|\pi^{\pm}\rangle = -|\pi^{\pm}\rangle$   $\hat{G}|\pi^0\rangle = -|\pi^0\rangle$ 

• As a boundary condition: (i=+, -, 0)

$$\pi^{i}(x+L) = \hat{G}\pi^{i}(x) = -\pi^{i}(x) \qquad |p| \in (\pi/L, 3\pi/L, 5\pi/L...)$$
(moving ground state)

• Technically very challenging to implement.

# A<sub>0</sub> Calculation

Phys.Rev.Lett. 115 (2015) 21, 212001

(arXiv:1505.07863)

#### **Ensemble**

- $32^3x64$  Mobius DWF ensemble with IDSDR gauge action at  $\beta$ =1.75. Coarse lattice spacing (a<sup>-1</sup>=1.378(7) GeV) but large, (4.6 fm)<sup>3</sup> box.
- Using Mobius params (b+c)=32/12 and  $L_s$ =12 obtain same explicit  $\chi SB$  as the  $L_s$ =32 Shamir DWF + IDSDR ens. used for  $\Delta I$ =3/2 but at reduced cost.
- Performed 216 independent measurements (4 MDTU sep.).
- Cost is ~0.9 BG/Q rack-day per complete measurement (4 configs generated + 1 set of contractions).
- G-parity BCs in 3 spatial directions results in close matching of kaon and  $\pi\pi$  energies:

$$m_{K}$$
=490.6(2.4) MeV 
$$E_{\pi\pi}(I=0) = 498(11) \text{ MeV}$$
 
$$E_{\pi\pi}(I=2) = 573.0(2.9) \text{ MeV}$$
 
$$E_{\pi}$$
=274.6(1.4) MeV  $(m_{\pi} = 143.1(2.0) \text{ MeV})$ 

#### Issue with ensemble generation

- Recently discovered mistake with RNG seeding used in ensemble generation:
  - With GPBC we have independent u and d quarks fields.
  - Dirac matrix is 2x2 in flavor space with components spanning boundary.
  - Pseudofermion field

$$\phi = (M^\dagger[U])^{1/2} \left(\begin{array}{c} \eta_d \\ \eta_u \end{array}\right) \ \ \text{where} \ \ P[\eta_i] \sim e^{-\eta_i^\dagger \eta_i}$$
 independent for each flavor

- Due to coding error, identical random numbers were used for  $\eta_u$  and  $\eta_d$  up to a relative shift of 12 sites in the y-direction:

$$\eta_u(x) = \eta_d(x + 12\hat{y})$$

- Persists through entire ensemble.
- At present have not found theoretical interpretation that would allow effect to be estimated.
- However, strong empirical evidence that effect is negligible for present calculation.

#### Evidence from 323x64 calculation

• Measured plaquette vs. value obtained from non-GPBC ensemble (with extrap to same quark mass):

GPBC, incorrect ensemble 0.512239(6)

Standard 0.512239(3)(7)

• More sensitive test: as u, d fields couple to same gauge field we should observe correlations between observables separated by 12 in y-direction.

$$\operatorname{Cov}(\delta) = \left\langle \frac{1}{6V} \sum_{x,\mu < \nu} \left[ P_{\mu\nu}(x) P_{\mu\nu}(x+\delta) - \mathcal{P}^2 \right] \right\rangle \quad {}^{1.0 \times 10^{-4}}$$

$$\operatorname{Cor}(\delta) = \frac{\operatorname{Cov}(\delta)}{\operatorname{Cov}(0)}$$

$${}^{5.0 \times 10^{-5}}$$

- Statistically significant (3 sigma) correlation between plaquettes seen at sep 12.
- However effect is tiny, ~5x10<sup>-5</sup>, unlikely to have strong effect on paper results where errors are 100x 1000x larger.



# Evidence from 16x32 calculation

•  $16^3$ x32 DWF+Iwasaki ( $\beta$ =2.13) test ensembles.

$$\eta_u(x) = \eta_d(x + 2\hat{t})$$

- Smaller lattice separation between correlated sites likely enhances effect.
- Generated an ensemble without error for comparison.
- Presently ~860 meas on corrected ensemble and 670 on uncorrected.
- Cannot see correlation in plaquette due to natural correlation between neaby sites. However evidence in link trace:



• Here at 2x10<sup>-4</sup> level.

• Inconclusive, ~1.5 sigma, ~0.8% discrepancy in pion energy



- No presently measurable difference between  $\pi\pi(I=0)$  effective energies (important for validity of  $K\to\pi\pi$  calculation)
- While apparently negligible, this error is uncontrolled theoretically and detracts from our claim of a first-principles calculation.
- Error will be corrected as part of our plans to extend the present calculation in near future.

# Results of A<sub>0</sub> Calculation

• Our phase shift  $\delta_0=23.8(4.9)(1.2)^\circ$  ~2.7 $\sigma$  below conventional Roy equation determination of  $\delta_0=38.0(1.3)^\circ$ 

[G.Colangelo, private communication]  $\overset{\scriptscriptstyle{\Box}}{\mathcal{B}}$ 

- Possibly low statistics concealing delayed plateau start?
- Matrix elements:

#### [Dominant contribution to $Re(A_0)$ ]





#### [Dominant contribution to $Im(A_0)$ ]



$${
m Re}(A_0)=4.66(1.00)_{
m stat}(1.21)_{
m sys} imes 10^{-7}~{
m GeV}$$
 (This work)  ${
m Re}(A_0)=3.3201(18) imes 10^{-7}~{
m GeV}$  (Experiment)

Good agreement for Re(A<sub>0</sub>) serves as test for method.

$$Im(A_0) = -1.90(1.23)_{stat}(1.04)_{sys} \times 10^{-11} GeV$$
 (This work)

- First ab initio prediction of Im(A<sub>0</sub>).
- ~85% total error on the predicted  $Im(A_0)$  due to strong cancellation between dominant  $Q_4$  and  $Q_6$  contributions:

$$\Delta[\operatorname{Im}(A_0), Q_4] = 1.82(0.62)(0.32) \times 10^{-11}$$
  
$$\Delta[\operatorname{Im}(A_0), Q_6] = -3.57(0.91)(0.24) \times 10^{-11}$$

despite only 40% and 25% respective errors for the matrix elements.

• Dominant systematic (15%) is due to PR truncation errors in the NPR exacerbated by low renormalization scale 1.53 GeV.

#### Results for ε'

- Re(A<sub>0</sub>) and Re(A<sub>2</sub>) from expt.
- Lattice values for Im(A<sub>0</sub>), Im(A<sub>2</sub>) and the phase shifts,

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = \operatorname{Re}\left\{\frac{i\omega e^{i(\delta_2 - \delta_0)}}{\sqrt{2}\varepsilon} \left[\frac{\operatorname{Im} A_2}{\operatorname{Re} A_2} - \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0}\right]\right\}$$

$$= 1.38(5.15)(4.43) \times 10^{-4}, \quad \text{(this work)}$$

$$16.6(2.3) \times 10^{-4} \quad \text{(experiment)}$$

• Find discrepancy between lattice and experiment at the  $2.1\sigma$  level.

#### **Conclusions and Outlook**

- First direct, lattice computation of A<sub>0</sub> performed.
- Ensemble generation error recently discovered, evidence suggests effect negligible.
- Measured Re(A<sub>0</sub>) in good agreement with experiment.
- 85% total error on  $Im(A_0)$  despite 25% and 40% errors on dominant  $Q_6$  and  $Q_4$  contributions resp., due to strong mutual cancellation.
- Total error on Re( $\epsilon'/\epsilon$ ) is ~3x the experimental error, and we observe a 2.1 $\sigma$  discrepancy. Strong motivation for continued study!
- Sys. errors dominated by perturbative truncation errors on the renormalization and Wilson coeffs due to low, 1.53 GeV scale.
- Currently computing NPR running to higher energies in order to reduce this systematic.
- On final result, stat. error currently dominant. Plan to shortly begin programme to greatly increase statistics, thus reducing stat. error and enabling better sys. error estimates.
- Existing, flawed data will be corrected as part of this programme.

#### Thank you!

# $\Delta I=3/2$ Calculation

Phys.Rev. D 91 (2015) 7, 074502 [arXiv:1502.00263 [hep-lat]].

### **Calculation Strategy**

• A<sub>2</sub> can be computed directly from charged kaon decay:

$$\langle (\pi \pi)_{I_3=1}^{I=2} | H_W | K^+ \rangle = \sqrt{2} A_2 e^{i\delta_2}$$

• Remove stationary (charged) pion state using antiperiodic BCs on d-quark propagator: d(x+L) = -d(x)  $|p| \in (\pi/L, 3\pi/L, 5\pi/L...)$ 

$$\pi^+(x+L)=[\bar ud](x+L)=-\pi^+(x)$$
 Moving ground state!  $\pi^0(x+L)=[\bar uu-\bar dd](x+L)=+\pi^0(x)$  Stationary ground state....

• Use Wigner-Eckart theorem to remove neutral pion from problem

$$\langle (\pi^+ \pi^0)_{I=2} | Q^{\Delta I_z = 1/2} | K^+ \rangle = \frac{\sqrt{3}}{2} \langle (\pi^+ \pi^+)_{I=2} | Q^{\Delta I_z = 3/2} | K^+ \rangle$$

• APBCs on d-quark break isospin symmetry allowing mixing between isospin states: however  $\pi^+\pi^+$  is the only charge-2 state with these Q-numbers hence it cannot mix.

- Calculation performed on RBC & UKQCD 48<sup>3</sup>x96 and 64<sup>3</sup>x128 Mobius DWF ensembles with (5 fm)<sup>3</sup> volumes and a=0.114 fm, a=0.084 fm. Continuum limit computed.
- Make full use of eigCG and AMA to translate over all timeslices. Obtain 0.7-0.9% stat errors on all bare matrix elements!
- Results:

$$Re(A_2) = 1.50(4)_{stat}(14)_{sys} \times 10^{-8} \text{ GeV}$$
  
 $Im(A_2) = -6.99(20)_{stat}(84)_{sys} \times 10^{-13} \text{ GeV}$ 

10%, 12% total errors on Re, Im!

• Systematic error completely dominated by perturbative error on NPR and Wilson coefficients.

#### An old homework problem

- 1964: CP-violation (indirect) first observed at BNL (Cronin, Fitch et al  $\rightarrow$  1980 Nobel prize)
- 1973: Framework for Standard Model CPV established (Kobayashi, Maskawa)
- 1993: Publication of first evidence of direct CPV from NA31 expt at CERN.
- 1999: KTeV at FermiLab and NA48 at CERN confirm direct CPV.
- 2001: First quenched calculations of ε' performed by CP-PACS and RBC using single particle amplitudes and LO ChPT to correct for missing pion.
- 2001: Technique established for lattice measurement of decays (Lellouch, Luscher)
- 2011: First full threshold (stationary, unphysically-heavy pions) calc. of  $A_0$  and  $A_2$  using dynamical domain wall fermions performed by RBC/UKQCD.
- 2012: First calculation of A<sub>2</sub> performed by RBC/UKQCD using DWF with physical kinematics, pion masses and large physical volume but single lattice spacing.
- 2015: Continuum calculation of A<sub>2</sub> performed by RBC/UKQCD
- 2015: Full threshold calculation of  $A_0$  and  $A_2$  using Wilson fermions by Ishizuka *et al* [arXiv:1505.05289]
- 2015: (This work) First complete, *ab initio* determination of  $\epsilon$ ' with physical kinematics and pion masses.

#### I=0 ππ energy

- Signal/noise deteriorates quickly due to vacuum contrib.
- Difficult to determine plateau start. Performed both 1- and 2-state fits.

| $t_{ m min}$ | $E_{\pi\pi}$ | $E_{\rm exc}$         | $\chi^2/\mathrm{dof}$ |
|--------------|--------------|-----------------------|-----------------------|
| 2            | 0.363(9)     | 1.04(17)              | -1.7(7)               |
| 3            | 0.367(11)    | 1.27(73)              | 1.8(8)                |
| 4            | 0.364(12)    | 0.86(39)              | 1.9(8)                |
|              |              | 2/10                  |                       |
| $t_{ m min}$ | $E_{\pi\pi}$ | $\chi^2/\mathrm{dof}$ |                       |
| 5            | 0.375(6)     | 2.2(9)                |                       |
| 6            | 0.361(7)     | 1.6(7)                | <b>←</b> 2% st        |
| 7            | 0.380(11)    | 0.9(7)                |                       |



- Our phase shift  $\delta_0=23.8(4.9)(1.2)^\circ$  lower than most pheno estimates, which prefer  $\delta_0\sim35^\circ$  .
- Luscher formula very steep in  $E_{\pi\pi}$ : small shifts energy translate to large (fractional) errors in  $\delta_0$ . More statistics needed to resolve.
- Using 35°  $\rightarrow$  ~3% change in  $A_0$ ; much smaller than other errs. For consistency we choose to use our lattice value.